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Abstract— Endowing robots with tactile capabilities opens up
new possibilities for their interaction with the environment,
including the ability to handle fragile and/or soft objects. In
this work, we equip the robot gripper with low-cost vision-
based tactile sensors and propose a manipulation algorithm
that adapts to both rigid and soft objects without requiring any
knowledge of their properties. The algorithm relies on a touch
and slip detection method, which considers the variation in the
tactile images with respect to reference ones. We validate the
approach on seven different objects, with different properties
in terms of rigidity and fragility, to perform unplugging and
lifting tasks. Furthermore, to enhance applicability, we combine
the manipulation algorithm with a grasp sampler for the task of
finding and picking a grape from a bunch without damaging it.

I. INTRODUCTION

Humans have a remarkable ability to manipulate a wide

range of objects in various situations. For instance, we can

effortlessly pick up and hold objects of different shapes and

sizes, adjust our grip, and move them around without much

thought. Furthermore, we can manipulate fragile objects

without damaging them. This level of flexibility and adapt-

ability cannot be easily replicated in robotic systems [1]. A

major challenge for current robotic systems is the deficiency

in sensory capabilities when compared to humans: human

fingers are soft, sensitive tactile sensors that enable humans

to feel contact forces as well as detect slippage of objects

with ease. Equipping robotic hands or grippers with similar

tactile sensing capabilities has been a long-standing goal of

the research community [2].

Recently, vision-based tactile sensors have received in-

creased popularity in the community [3] thanks to their rel-

atively low cost, high resolution, and ease of use. Examples

of vision-based tactile sensors are GelSight [4], TacTip [5],

and DIGIT [6]. The basic principle of these sensors is to use

a camera to capture the deformation of an elastomer material

occurring in case of contact with objects. By combining this

vision-based tactile sensing with powerful machine learn-

ing techniques, researchers have managed to demonstrate

impressive tasks such as in-hand manipulation [6] and ball

rolling [7] (see Sec. II for more details). However, these

solutions typically rely on large neural networks that may
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Fig. 1: Sequence of states for picking a grape berry from

a bunch, without damaging it, using visual-tactile sensors

mounted on the robot gripper.

be tailored to specific sensors and objects and may require

re-training to address different tasks. Additionally, many of

the existing approaches are designed to handle rigid objects.

In this work, we aim to bridge this gap by presenting

a simple learning-free touch and slip detection technique

for vision-based tactile sensors that relies on a single hy-

perparameter, which can be easily tuned without gathering

large datasets. We design an algorithm that combines such

detection methods to handle a wide range of objects, from

soft to rigid ones, without requiring any prior knowledge

of the object properties. Finally, we integrate this algorithm

into a grasping pipeline [8] that proposes a set of grasp poses

from which we select one to execute for picking a grape from

a bunch, as shown in Fig. 1. In detail, our contributions are:

• A simple-to-deploy touch and slip detection method;

• The design of an algorithm to manipulate soft or rigid

objects, which can potentially be fragile;

• Extensive real-world experimental validation using low-

cost DIGIT sensors [6] with seven different objects,

such as tomatoes and ridged connectors (all videos on

the project website1);

• Deployment of the framework in a comprehensive

grasping pipeline detaching table-grapes from a bunch

with an off-the-shelf robotic platform.

II. RELATED WORK

Here, we review prior work in vision-based tactile manip-

ulation. For an overview of non-vision-based tactile sensing

and manipulation, we refer the reader to the following two

reviews [9], [10].

1 https://vision-tactile-manip.github.io/exp/



The general interest in vision-based tactile manipulation

took off with the invention of the GelSight sensing technol-

ogy [4], and, in particular, its adaption to fit gripper form

factors [11]–[14]. Since conception, these and other similar

types of sensors have been used in a range of tasks, including

pose estimation [15], [16], grasping [17]–[20], slip detection

[21], shape reconstruction [22], [23], object tracking [24],

and closed-loop control [7], [25]–[27].

Most of the above works [7], [15], [17]–[19], [22], [23],

[25]–[27], tackles the problem with data-driven methods. For

instance, in grasping, Calandra et al. [17] used a Convo-

lutional Neural Network (CNN) to classify grasp success

given an RGB and tactile image of the grasped object,

while the authors of [18], [19] used a CNN to suggest

local gripper adjustments based on the current tactile image

for improving grasps. Other example works in vision-based

tactile deformable object manipulation have explored closed-

loop control of the gripper width for cable manipulation [25]

and pivoting [26]. From an application perspective, the main

limitation of the data-driven methods is gathering datasets

diverse enough for training models that can generalize to

many unseen objects, which is both time-consuming and

non-trivial to realize.

To mitigate the problem inherent to data-drive vision-

based tactile manipulation methods, a few works have ex-

plored learning-free approaches [16], [21], [24]. The earliest

of these works, [16], did tactile pose estimation of a USB

stick and used the estimated pose for inserting the USB into

a port. Similar to [16], Izatt et al. [24] proposed an Extended

Kalman Filter (EKF)-based method for tracking the pose of

a manipulated object using point clouds from an RGB-D

camera and the tactile image from a GelSight sensor.

Out of the learning-free methods, the one most similar to

ours is [21], where the authors also proposed an algorithm

for adjusting the grasp force to avoid object slippage when

grasping. That work, however, required markers on the

GelSight sensor to detect slippage and mostly evaluated the

method on rigid objects. Our method, on the other hand, is

marker-free and can handle rigid, deformable, and fragile

objects. Moreover, it is the first vision-based tactile manip-

ulation method to successfully realize cable unplugging.

III. METHOD

As mentioned in the introduction, we consider a robot

equipped with two vision-based tactile sensors mounted

on its gripper, as shown in Fig. 1. Our focus is on de-

signing a manipulation strategy that adaptively modulates

the gripper closure in order to manipulate an object of

interest, which might either be soft or rigid and potentially

fragile. Specifically, the objective is to ensure that the gripper

can securely grasp the object without losing it during the

manipulation task and, at the same time, it does not compress

the object more than necessary to hold it. The latter aspect

is fundamental in the case of fragile objects, such as table-

grapes, where over-compression may result in damage to

the objects. Examples of manipulation tasks that require

such ability include unplugging or detaching objects, which

require a certain amount of force to be exerted without over-

compressing the object, and moving fragile items, where

it is crucial to modulate the gripper closure carefully, as

mentioned above. As tactile sensors, we use DIGIT sensors,

but the approach can be generalized to any vision-based

tactile sensor.

In order to successfully modulate the gripper closure and

perform a manipulation task on both soft and rigid objects,

we identify two main capabilities that the system must

provide:

1) Touch detection, which establishes whether contact

with an external object has occurred, regardless of the

texture, shape, rigidity, and other physical properties

of the object;

2) Slip detection, which establishes, after a contact detec-

tion, whether the object is sliding out of the gripper.

Based on these capabilities, a manipulation algorithm is

designed which establishes the robot reaction in terms of

motion and modulation of the gripper closure in response to

either touch or slip detection. Desirable features to achieve

such capabilities are sensitiveness and ease of tuning. Specif-

ically, for touch detection, we want the system to be sensitive

enough to detect contact, even with soft objects, without

over-compressing them. Nevertheless, a balance must exist

that allows the system to be robust with respect to noisy

data of the tactile sensor, and avoid misclassifying such

noise as a contact state. Regarding slip detection, it should

be sensitive enough to prevent the object from completely

slipping out of the gripper, but at the same time, it should

not be overly sensitive and detect slip for minor changes

in the object’s positioning. Our approach addresses both

capabilities with the same algorithm and only relies on a

single hyperparameter that is easy to tune. In the following,

we first describe the touch and slip detection method and then

describe how to exploit it into a manipulation algorithm.

A. Touch and Slip Detection

The basic principle behind the touch and slip detection

methods is the same. Given a reference image of a tactile

sensor, which is updated over time according to the manip-

ulation algorithm, we evaluate the pixel-wise variation of

consecutive frames with respect to the reference image. If

this variation is above a certain threshold, a change in the

tactile sensor state is recorded. Next, the change detection is

categorized as either touch or slip detection. In the following,

firstly, we focus on how to recognize a change in the sensor

state and, secondly, we describe how the classification into

touch or slip is made. Note that these detections are carried

out independently for each sensor and then combined in the

manipulation algorithm.

Let Ist ∈ R
h×w×3 be the normalized tactile input image

(i.e., values in the range [0, 1]), with height h and width

w, of the sensor s at time step t, where s ∈ {1, 2}, and let

Rs ∈ R
h×w×3 be the normalized reference image related

to the same sensor. Then, we calculate the RGB difference

image Ds
t ∈ R

h×w×3 as

Ds
t = |Ist −Rs|, (1)



Fig. 2: Examples of touch detection on a grape (left column)

and slip detection on an AUX connector (right column)

which is converted into a mono-dimensional image

D̄s
t ∈ R

h×w by averaging the three (RGB) channels. At

this point, a thresholding operation is applied to mitigate

the noise in the tactile sensor data. Specifically, we assign

zero value to pixels with intensity below a noise threshold

τ sn ∈ [0, 1], and a value of 1 otherwise. The result is a binary

difference image D̃s
t ∈ B

h×w, with B = {0, 1}, capturing

the relevant difference of the current tactile image compared

to the reference image. Such a binary image is combined

with the one at the previous time step to detect a change

in the sensor state. Specifically, we define the change image

Cs
t ∈ B

h×w at time t as

Cs
t = D̃s

t−1 ⊙ D̃s
t , (2)

where ⊙ denotes the element-wise multiplication (Hadamard

product). Then, we rely on the fulfillment of the following

condition to determine whether a change has occurred

1

wh

h∑

i=1

w∑

j=1

Cs
t (i, j) ≥ τd, (3)

with τd ∈ [0, 1] a detection threshold, i.e., a change occurs if

the ratio of ones in Cs
t to the total number of pixels exceeds

a specified threshold. Note that the use of consecutive

images in Cs
t enhances the system robustness since it enables

disregarding pixels that are equal to one for a single time

step. blue Such occurrences can arise due to the presence of

noise in the vision-based tactile sensor.

After detecting a change, we classify it by simply ana-

lyzing when it has occurred. Specifically, since at the start,

we assume no contact with the object, when the first change

is recognized, this is classified as touch detection. On the

other hand, if the change occurs after a touch has been

established, this is classified as slip detection. Note that in

the first case, the reference image is related to the “empty”

sensor, i.e., no object in contact, while in the second case, the

reference image represents the image obtained when holding

the object. More details on the reference image update are

provided in the next section, along with the manipulation

algorithm. Fig. 2 (left column) shows an example of images

obtained in case of touch detection with a grape, where Fig. 2

(top left) represents the reference (“empty”) image, Fig. 2

(middle left) shows the current tactile image and Fig. 2

(bottom left) reports the change image. Similarly, Fig. 2

(right column) shows examples of images obtained in case

of slip detection of an AUX connector.

Note that two thresholds are used in the above for detec-

tion, i.e., the noise threshold τ sn and the detection threshold

τd. To determine the first threshold τ sn, we propose an easy

automatic calibration procedure for each sensor s to be run

when there is no contact. In detail, we record the maximum

values in the averaged difference image for K time steps and

then compute the mean value, i.e,

τ sn =
1

K

K∑

t=1

max(D̄s
t ). (4)

It follows that the only hyperparameter to select for the

touch/slip detection is τd as detailed in the following.

B. Manipulation Algorithm

Fig. 3 presents an overview of the proposed manipulation

algorithm. Briefly, the basic idea is that once touch detection

is complete, the robot can initiate the manipulation motion.

If any slip occurs, the gripper closure is adjusted to ensure

a firm grasp and the manipulation motion can be continued.

At the start, we assume that the robot is in a pre-grasping

pose, wherein the closure of the gripper will result in the

grasping of the object. Additionally, we assume that the

noise thresholds τ sn have been calculated according to the

calibration procedure described earlier. No knowledge is

assumed regarding the object to manipulate in terms of

texture, shape, rigidity, and other physical properties.

The first objective is to retrieve the initial reference images

Rs of both the tactile sensors, i.e., s ∈ {1, 2} (state 1 in

the Fig. 3). Such reference images are representative of the

tactile images when no contact is happening, as shown for

instance in Fig. 2 (top left). These are obtained by collecting

and averaging N tactile images for each sensor, i.e.,

Rs =
1

N

N∑

t=1

Ist , s ∈ {1, 2}. (5)

Once the reference images are defined, touch detection is

activated on both sensors (indicated with blue color), and the



Fig. 3: Overview of the manipulation algorithm. The states

where the touch/slip detection is active are highlighted in

blue color.

gripper begins to close gradually (state 2 in the figure). The

gripper keeps closing until both sensors detect the occurrence

of touch, in order to ensure that the object can be held by

the two fingers of the gripper.

At this point, the reference images Rs, ∀s, are updated

again to enable slip detection. As in (5), we gather the next

N tactile images and average them for each sensor (state 3 in

Fig. 3). In this case, the reference images are representative

of the tactile images when the robot is holding the object, as

shown for instance in Fig. 2 (top right). Therefore, a variation

with respect to the reference image would indicate a slip of

the object.

After completing the update of the reference images, the

robot starts the manipulation and moves as required (state

4 of Fig. 3). For instance, in an unplugging task, the robot

would begin moving in the unplugging direction. While the

manipulation is in progress, slip detection is activated.

If slip is detected by either of the tactile sensors, we

apply a reaction strategy. Our first step is to reverse the

manipulation motion, meaning that the robot returns to the

configuration before slip detection (state 5 of the figure). In

contact-rich manipulation tasks, such as unplugging objects,

this action helps to prevent the object from slipping out

of the gripper completely in the event that slip conditions

persist over multiple time steps. However, in non-contact-

rich tasks, such as object transportation, this phase might be

unnecessary.

Once the reverse motion is complete, the gripper closure

is modulated and the grasp is tightened (state 6 of Fig. 3).

To this aim, the gripper is closed by a small amount

depending on the gripper resolution. In our case, we utilize

displacements of 0.001 m. The last step of the slip reaction

strategy is updating the detection threshold τd (state 7 of the

figure). Specifically, we express the threshold as

τd = ksτd,ini

where τd,ini is the initial value of the threshold that the user

has to select, while ks ∈ R
+ is a positive gain which is

doubled every time a slip is detected, i.e., ks = 2 ks,prev
where ks,prev is the previous value of ks and is initialized

to 1. This exponential increase of the threshold allows

us to adapt the slip detection sensitiveness over time: the

tighter the object is grasped, the higher the tolerance for

slip detection must be; otherwise, the system would keep

detecting slippage for any minor change, preventing the

successful manipulation of the object.

At the end of the slip reaction strategy, the reference im-

ages are updated (state 3 of the figure) and the manipulation

is recovered (state 4 of the figure) until task completion.

C. Integration into Grasping Pipeline

Our manipulation algorithm assumes that a pre-grasping

pose is given. In simple scenarios, such as picking objects

from a table, using predefined grasp poses is reasonable.

However, manually defining successful grasp poses in more

challenging scenarios, such as picking grapes from a bunch,

is non-trivial. Therefore, in more challenging scenarios, we

use the grasp sampling method in [8] to suggest good grasp

poses for the manipulation algorithm.

In short, the grasp sampler from [8] is a conditional

generative neural network that takes as conditional inputs an

incomplete point cloud of the object to grasp and a reference

grasp approach direction. From these inputs, the sampler then

generates multiple grasps whose approach direction is close

but not exactly the reference one. To simplify the task, we

select a region of interest given the point cloud and feed it to

the grasp sampler. In addition, we also manually select, from

all generated grasps, the grasp the robot should reach, which

is provided to the low-level Cartesian controller. Once the

grasp pose is reached, the manipulation algorithm described

above is executed.

IV. EXPERIMENTS

We validated the effectiveness of the proposed approach

with a Franka Emika Panda robot, equipped with two DIGIT

sensors on the gripper, performing various manipulation

tasks, as shown in Fig. 4. In detail, we performed an

extensive validation of the manipulation algorithm on 7
different objects, including rigid, soft, and fragile ones.

Finally, inspired by the needs of the European Project

CANOPIES, focusing on the precision agriculture in table-

grape vineyards, we tested the overall grasping pipeline for

detaching a (soft and fragile) table-grape berry from a bunch.

As mentioned earlier, the challenge in manipulating these



(a) Rough conn. (b) Smooth conn. (c) Raw egg. (d) Glass. (e) Tomato. (f) White grape. (g) Black grape.

Fig. 4: Illustrations of the considered objects to manipulate (top row) and the respective tactile sensor images (bottom row).

soft objects is to apply the necessary force to detach them,

which typically varies based on the object, while avoiding

any damage to the object. Examples of all manipulation

tasks and of the integrated pipeline are provided in the

supplementary video.

For all experiments, we set the initial detection threshold

equal to τd,ini = 0.01 and considered displacements of

0.001 m to tighten the gripper in state 6. The noise thresholds

τ sn were collected before each experiment using K = 100
frames for each sensor, and the reference images Rs were

updated using N = 10 frames. We set the closing gripper

speed to 0.0015 m/s. All experimental videos and tactile

sensor images are available on the project website1.

A. Manipulation Algorithm Validation

To validate the manipulation algorithm, we considered

seven objects shown in Fig. 4. In the figure, for each object

(top row), an example of the respective tactile image is shown

(bottom row). We performed two unplugging tasks of rigid

connectors with different forces needed to unplug from their

sockets and different textures, one with a rough surface (Fig.

4a) and one with a smooth surface (Fig. 4b). Next, we carried

out lifting tasks on two fragile objects, a plastic glass (Fig.

4d) and a raw egg (Fig. 4c). Then, we realized detaching

tasks of three soft fragile objects, that are tomatoes (Fig. 4e)

and white (Fig. 4f), and black (Fig. 4g) grapes. For these soft

objects, we attached the respective connecting branch to the

experimental setup in order to generate a realistic detaching

force. In all tests, we started from a pre-grasping pose and

required the robot to move up to perform the unplugging,

lifting, or detaching task. Each manipulation task of an object

was repeated three times. The results for all objects are

provided in Table I. Specifically, we report the average and

standard deviation of duration, compression percentage with

respect to the gripper width at touch time, and the number

of slip detections.

We can observe an obvious correlation between the num-

ber of slippages and the duration and compression needed

to manipulate a given object: the higher the number of

slippages, the longer the task duration and the higher the

compression. The rough connector is by far the object that

needs the most force to be unplugged, and therefore is the

Experiment Duration [s] % Compression # Slippages

Rough conn. 108.92± 1.43 45.45± 1.27 11.00± 0.00
Smooth conn. 79.88± 3.77 10.47± 1.28 5.00± 0.82
Egg 68.37± 2.20 3.69± 0.32 1.00± 0.00
Glass 51.52± 1.51 1.67± 0.74 0.67± 0.47
Tomato 43.50± 2.09 4.78± 2.31 0.67± 0.47
White grape 55.45± 1.15 13.79± 3.75 1.33± 0.47
Black grape 58.38± 1.52 18.45± 2.28 2.67± 0.47

TABLE I: Results in terms of duration, % Compression, and

# Slippages. Each manipulation is repeated three times, and

average and standard deviation values are reported.

one resulting in the highest number of slippages (equal to

11) since a strong grasp must be achieved to succeed in

the manipulation. Similarly, the highest object compression

compared to the touch configuration (equal to 45% on

average), and longest duration (equal to 109 s on average)

are recorded. A much easier unplugging task is obtained with

the smooth connector, resulting in 5 slippages on average.

This shows that objects of the same category can yield

very different results based on their specific features and

properties.

The plastic glass and the tomatoes, on the other hand,

led to the least amount of slippage detected (below 0.7 on

average). Some tests were successful without requiring any

adjustments to the gripper closure. This result was expected

as, for the glass manipulation, the glass surface is not highly

slippery, and there are no significant opposing forces that

need to be overcome during the lifting process; for the

tomato detaching, the connection of the fruit to the branch

is relatively weak and, again, does not need to counteract

high forces. However, in both cases, the proposed algorithm

successfully accomplished the tasks without deforming or

damaging the objects. A slightly higher number of slippages

(equal to 1) was recorded with the raw egg lifting, due to

the higher weight and a more slippery surface compared to

the plastic glass.

The grapes were the most challenging objects we tested, as

they are significantly softer than the elastomer material of the

DIGIT sensor. As a result, minimal deformation of the sensor

material occurs during grasping, while the grape itself can

be significantly deformed. Additionally, grapes are connected



to the bunch by pedicels, which need to be pulled apart to

detach a grape berry. This process requires exerting a certain

amount of force, which must be carefully controlled not to

cause the grape to get crushed and burst open. On average,

slippage was detected 2.67 times for black grapes and 1.33
times for white grapes, due to the different properties of the

specific grape varieties. However, in all tests of both grape

varieties, the system was able to successfully pick the grape.

The norm of the estimated force at the end effector [28],

denoted by ∥fee∥ and based on the joint torque sensor

measures, is shown in Fig. 5 for manipulating the rough

connector (top) and a black grape (bottom). The states

of the manipulation algorithm are also highlighted with

different background colors. Some states are not visible due

to short duration. The figure shows how the end effector force

varies according to the specific phase of the manipulation

algorithm. Specifically, for the rough connector, every time a

slip is detected (beginning of yellow background blocks), the

grasp is tightened, leading to an increasing force generated

to unplug the object during subsequent manipulation phases

(light red background). This trend is observed until the

connector is finally unplugged at about t = 80 s. Note

that during the tightening phases, we stop pulling the ob-

ject, which is why a drop in the force norm is observed.

Regarding the black grape manipulation, we observe much

fewer slippages compared to the previous case. However,

the same trend is preserved: at the beginning of the first

two manipulation phases, an increase in the force norm is

observed to detach the grape until about t = 35 s when the

force drops since the grape is successfully detached.

B. Integrated Pipeline Validation

We now present the results obtained with the entire

pipeline exploiting the suggestion of the grasping poses as

described in Sec. III-C. The objective is to detach black

grapes from a bunch, as shown in Fig. 1 and in the ac-

companying video. This application might be relevant, for

instance, for assistive settings, and for quality inspection

applications. In this case, during the manipulation phase,

the robot was required to move horizontally in the opposite

direction with respect to the bunch. For each grape detaching

task, the user cropped the point cloud to mainly contain the

object and selected the reference grasp approach direction

the sampled grasps should be close to. Given these inputs,

the grasp sampler first generated grasp poses, and then a

human manually selected the pose the robot should reach.

We detached three consecutive grapes from a small bunch

with an average duration of 111.93 ± 12.14 for the ma-

nipulation algorithm. The compression of the black grape

in this setting was 22.23 ± 7.72, which is slightly higher

than the compression observed in the single grape setting.

Similarly, we also recorded a higher number of slippage

occurrences (4.67 ± 3.77), which we attribute to the fact

that the achieved grasps are not as stable as in the single

grape setting. Nevertheless, our method was able to detach

the grapes without damaging them in all cases1.

(a) Rough connector.

(b) Black grape.

Fig. 5: Examples of the evolution of the force norm for

manipulating the rough connector (top) and a black grape

(bottom). The states of the manipulation algorithm are also

highlighted with different background colors.

V. DISCUSSION

In this work, we introduced a simple-to-deploy algorithm

detecting touch and slippage using the vision-based DIGIT

sensors for a wide range of soft and rigid objects. This

capability is essential for various manipulation tasks, as

highlighted in our demonstration of unplugging, lifting, and

detaching tasks.

The use of camera-based vision sensors, like the DIGIT,

generates images that can be processed by advanced machine

learning techniques, as discussed in related work and demon-

strated in [6], to enable touch and slip detection capabilities.

Specifically, the Pytouch library [29] that is recommended

for DIGIT use provides pre-trained machine learning models

which can be utilized for touch detection. However, in our

test, we could not reliably detect the object as shown at the

link2. We hypothesize that this is related to the fact that pre-

trained models might be hardware specific. This motivates

why we opted for a learning-free approach to touch and slip

detection which can be easily adapted to different settings.

Another challenge that we encountered is that the quality

of the tactile images, in terms of sharpness of the manipu-

lated object, increases as the contact force increases, i.e., the

harder we press, the more details are visible. This is not an is-

sue for rigid objects, as impressively demonstrated in [6] (and

shown in this work on the rough AUX connector), where we

2https://vision-tactile-manip.github.io/exp/#pytouch



can apply relatively high forces without damaging the object.

However, it represents a major limitation when dealing with

soft objects. In cases where the object is significantly softer

than the sensor elastomer material, we might not be able

to observe any deformation through the images, even if the

object is being compressed. This motivates why we designed

an increasing detection threshold which allows us to detect

small changes at first (which are suitable for soft objects),

but if needed it also allows us to apply significant forces

after few iterations (which are suitable for rigid objects).

However, as a drawback of the proposed approach, we

identify the fact that it may result in a rather slow ma-

nipulation process, since we need to iteratively detect slip

occurrences in order to modulate the gripper closure. In

contrast, humans can easily identify in advance properties of

the objects, which enable their manipulation without the need

of multiple slip occurrences. Therefore, we aim to improve

this aspect in future work by inferring relevant object prop-

erties while performing manipulation and exploiting them to

achieve a more proactive behavior.

VI. CONCLUSION

In this work, we proposed a manipulation algorithm for

soft and rigid objects using vision-based tactile sensors

mounted on the robot gripper. The algorithm is based on

a touch and slip detection method which evaluates the

variations in the sensor images and relies on a single hy-

perparameter. No knowledge about the shape, texture, and

physical properties of the object to manipulate was required.

We showed the effectiveness of the approach on seven real-

world objects, including rigid, soft, and fragile ones, using

two DIGIT sensors for unplugging, lifting, and detaching

tasks. Finally, we combined the manipulation strategy with

a grasping proposal system to provide a comprehensive

framework and validated it on a grape detaching task.
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